M Table CT5. Commercial Sector Energy Consumption Estimates, Selected Years, 1960-2016, Maine | _ | | | | Petroleum | | | | | | | Biomass | | | | | | | |------------|--|------------------------|-----------------------------|------------------------|------------------|------------|--------------------------------|----------------------|--------------------|--|-------------------------------------|---------------------------------------|----------------------|--------------------------------|------------------------------|----------------------------|------------------------------| | | | Coal | Natural
Gas ^a | Distillate
Fuel Oil | HGL ^b | Kerosene | Motor
Gasoline ^c | Residual
Fuel Oil | Total d | Hydro-
electric
Power ^{e,f} | Wasa | | Solar ^{f,h} | Retail
Electricity
Sales | | Electrical | | | <u> </u> | ⁄ear | Thousand
Short Tons | Billion
Cubic Feet | Thousand Barrels | | | | | | Million
Kilowatthours | Wood
and
Waste ^{f,g} | Geothermal ^f | Mill
Kilowat | | Net
Energy ^{f,i} | System
Energy
Losses | Total ^{f,i} | | 196 | 60 | 84 | 0 | 996 | 202 | 100 | 29 | 145
72
292 | 1,473 | NA | | | NA | 542 | | | | | 196
197 | 65
70 | 54
19 | 0
(s) | 1,294
1,660 | 225
226 | 81
79 | 29
34
40 | 72
292 | 1,706
2,298 | NA
NA | | | NA
NA | 819
975 | | | | | 197 | 75 | 17 | 1 | 1,611 | 357 | 45 | 40 | 334 | 2,386 | NA | | | NA | 1,568 | | | | | 198
198 | 80
85 | 20
38 | 1 | 1,840
1,082 | 233
206 | 70
99 | 48
104 | 682
1,040 | 2,874
2,530 | NA
NA | | | NA
NA | 1,717
2,338 | == | | | | 199 | 90 | 34 | 2 | 2,006 | 510 | 68 | 101 | 2,137 | 4,821 | 0 | == | == | 0 | 2,847 | == | | | | 199
199 | 95 | 3 | 2 | 2,285
2,424 | 662
777 | 161
148 | 12
12
12 | 369
508 | 3,489
3,868 | 0 | | | 0 | 2,973 | | | | | 199 | | 4 | 3 | 2,424 | 574 | 157 | 12 | 587 | 3,680 | 0 | | | 0 | 3,276
3,343 | | | | | 199 | 98 | 3 | 2 | 2,748 | 635 | 242
135 | 12
12 | 281 | 3,918 | Ö | | | 0 | 3,388 | | | | | 199
200 | 99
00 | 3 | 3 | 2,792
3,223 | 560
618 | 135
136 | 12
12 | 109
253 | 3,607
4,242 | 0 | | | 0 | 3,553
3,876 | == | | | | 200 | 01 | 3 | š | 2,516 | 759 | 152 | 12
12 | 253
187 | 3,626 | ŏ | | | 0 | 3,836 | | | | | 200
200 | 02 | 2 | 5
5 | 2,721 | 466
805 | 112
161 | 12
20 | 396 | 3,708
5.085 | 0 | | | 0 | 3,848
3,959 | | | | | 200 | 04 | 2 | 5 | 3,781
3,478 | 549 | 251 | 24 | 319
348 | 4,650 | 0 | == | == | 0 | 4,325 | == | | | | 200 | 05 | 3 | 5 | 2,882 | 1,060 | 217 | 14 | 494
280 | 4,666 | 0 | | | 0 | 4,157 | | | | | 200
200 | 06
07 | 2 | 5
6 | 2,608
2,931 | 894
1,362 | 150
117 | 31
48 | 280
408 | 3,962
4,865 | 0 | == | | 0 | 4,134
4,195 | == | == | | | 200 | 08 | Ō | 6 | 2,661 | 1,367 | 48 | 20 | 746 | 4,842 | Ō | | | Ō | 4,148 | | | | | 200 | 09
10 | 0 | 6
6 | 2,107
2,189 | 1,603
1,200 | 52
49 | 34
37 | 407
283 | 4,204
R 3,759 | 0 | | | 0 | 4,071
4,101 | | | | | 20 | 11 | ő | 7 | 2,395 | 1.433 | 38
22 | 19 | 208 | R 4.092 | ő | | | i | 4,018 | | | | | 20°
20° | | 0 | 7
8 | 1,801
1,429 | 1,449
1,848 | 22
20 | 17 | 104
208 | R 3,394
R 3,536 | 0 | | | 2
4 | 4,053
4,016 | | | | | 20 | | 0 | 9 | 1,744 | 1,760 | 36 | 30
23 | 58 | H 3.621 | 0 | | | 4 | 3,985 | | | | | 20 | 15 | 0 | 10 | 1,509 | 1,810 | 36
34 | 315 | 58
59 | H 3,726 | 0 | | | 6 | 4,018 | | | | | 20 | 2016 0 9 1,422 1,700 32 311 43 3,509 0 10 3,986 Trillion Btu | | | | | | | | | | | | | | | | | | 196 | 60 | | | | | | | | | | | | | | | 16.9 | | | 196
196 | 65 | 2.1
1.3 | 0.0 | 5.8
7.5 | 0.8
0.9 | 0.6
0.5 | 0.2
0.2
0.2
0.2 | 0.9
0.5 | 9.5 | NA | 0.2
0.1 | NA | NA | 2.8 | 12.3
13.7 | 6.7 | 16.9
20.4
25.4
32.5 | | 197
197 | 70
75 | 0.4
0.4 | 0.4
0.5 | 9.7
9.4 | 0.9
1.4 | 0.4
0.3 | 0.2 | 1.8
2.1 | 13.0
13.3 | NA
NA | 0.1
0.1 | NA
NA | NA
NA | 3.3
5.3 | 17.3
19.7 | 8.1
12.8 | 25.4
32.5 | | 198 | 80 | 0.5 | 0.9 | 10.7 | 0.9 | 0.4 | 0.3 | 4.3 | 16.6 | NA | 0.2 | NA | NA | 5.9 | 23.9 | 14.1 | 38.0 | | 198
198 | 85 | 0.9
0.9 | 1.2
1.7 | 6.3
11.7 | 0.8
2.0 | 0.6
0.4 | 0.5
0.5 | 6.5
13.4 | 14.7
28.0 | NA
0.0 | 0.2
3.1 | NA
0.0 | NA
0.0 | 8.0
9.7 | 25.0
43.4 | 18.3
19.9 | 43.2
63.2 | | 199 | | 0.9 | 2.5 | 13.3 | 2.5 | 0.4 | 0.5 | 2.3 | 19.1 | 0.0 | 4.0 | 0.0 | 0.0 | 10.1 | 35.8 | 16.0 | 51.7 | | 199
199 | 96 | 0.1 | 2.6
2.8 | 14.1 | 3.0
2.2 | 0.8
0.9 | 0.1 | 3.2
3.7 | 21.2 | 0.0 | 3.9
3.9 | 0.0 | 0.0 | 11.2 | 38.9 | 19.2 | 58.2
59.2 | | 199 | | 0.1
0.1 | 2.8
2.5 | 13.7
16.0 | 2.2 | 0.9
1.4 | 0.1
0.1 | 3.7
1.8 | 20.5
21.6 | 0.0
0.0 | 3.9 | 0.0
0.0 | 0.0
0.0 | 11.4
11.6 | 38.6
39.6 | 20.6
19.9 | 59.2
59.4 | | 199 | 99 | 0.1 | 2.6 | 16.2 | 2.1 | 0.8 | 0.1 | 0.7 | 19.9 | 0.0 | 3.6 | 0.0 | 0.0 | 12.1
13.2 | 38.2 | 19.8 | 58.0 | | 200 | 00
01 | 0.1
0.1 | 3.2
3.1 | 18.8
14.6 | 2.4
2.9 | 0.8
0.9 | 0.1
0.1 | 1.6
1.2 | 23.6
19.7 | 0.0
0.0 | 3.5
2.1 | 0.0
0.0 | 0.0
0.0 | 13.2
13.1 | 43.5
38.1 | 22.7
21.5 | 66.3 | | 200 | 02 | (s) | 5.4 | 15.8 | 1.8 | 0.6 | 0.1 | 2.5 | 20.8 | 0.0 | 2.3 | 0.0 | 0.0 | 13.1 | 41.7 | 18.8 | 59.6
60.5 | | 200 | 03 | (s) | 5.0
5.0 | 22.0
20.2 | 3.1
2.1 | 0.9 | 0.1
0.1 | 2.0
2.2 | 28.1 | 0.0
0.0 | 2.4
2.2 | 0.0
0.0 | 0.0
0.0 | 13.5 | 49.0
48.1 | 20.9 | 69.9 | | 200 | 04
05 | (s)
0.1 | 5.0
5.0 | 20.2
16.8 | 4.1 | 1.4
1.2 | 0.1 | 3.1 | 26.1
25.2 | 0.0 | 2.2 | 0.0 | 0.0 | 14.8
14.2 | 48.1
47.3 | 22.5
20.9 | 70.6
68.1
66.5 | | 200 | | 0.1 | 5.0 | 15.1 | 3.4 | 0.8 | 0.2 | 1.8 | 25.2
21.3 | 0.0 | 2.7
2.6 | 0.0 | 0.0 | 14.1 | 43.1 | 23.4 | 66.5 | | 200
200 | 07
08 | 0.1
0.0 | 6.2
6.3 | 17.0
15.4 | 5.2
5.2 | 0.7
0.3 | 0.2
0.1 | 2.6
4.7 | 25.6
25.7 | 0.0
0.0 | 2.7
2.9 | 0.0
0.0 | 0.0
0.0 | 14.3
14.2 | 48.9
49.1 | 21.9
22.2 | 70.8
71.3 | | 200 | 09 | 0.0 | 5.8 | 12.2 | 6.2 | 0.3 | 0.2 | 2.6 | 21.4 | 0.0 | 4.0 | 0.0 | 0.0 | 13.9 | 45.0 | 18.9 | 63.9 | | 20 | 10 | 0.0
0.0 | 6.1
6.9 | 12.6
13.8 | 4.6
5.5 | 0.3
0.2 | 0.2
0.1 | 1.8
1.3 | 19.5
20.9 | 0.0
0.0 | 4.1
3.8 | 0.0
0.0 | (s)
(s) | 14.0
13.7 | 43.6
45.3 | 19.7
18.1 | 63.3
R 63.4 | | 20 | 12 | 0.0 | 7.5
8.4 | 10.4 | 5.6 | 0.1 | 0.1 | 0.7 | R 16.8 | 0.0 | 3.3 | 0.0 | | 13.8 | R 41.5 | 19.7 | R 61.3 | | 20 | 13 | 0.0 | 8.4 | 8.2 | 7.1 | 0.1 | 0.2 | 1.3 | R 16.9 | 0.0 | 3.3
3.7 | 0.0 | (s)
(s) | 13.7 | R 42.7 | 16.0 | n 58./ | | 20°
20° | | 0.0
0.0 | 9.3
10.4 | 10.1
8.7 | 6.8
6.9 | 0.2
0.2 | 0.1
1.6 | 0.4
0.4 | R 17.5
R 17.8 | 0.0
0.0 | 3.7
R 3.9 | 0.0
0.0 | (s)
0.1 | 13.6
13.7 | R 44.2
R 45.9 | 19.1
20.4 | R 63.3
R 66.3 | | 20 | 16 | 0.0 | 8.8 | 8.2 | 6.5 | 0.2 | 1.6 | 0.3 | 16.8 | 0.0 | 3.9 | 0.0 | 0.1 | 13.6 | 43.2 | 19.0 | 62.1 | | _ | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | a Natural gas as it is consumed; includes supplemental gaseous fuels that are commingled with natural gas. Beginning in 2009, includes a small amount of wind energy consumed by commercial utility-scale facilities. Beginning in 1980, adjusted for the double-counting of supplemental gaseous fuels, which are included in both natural gas and the other fossil fuels from which they Natural gas as its consistency includes supplemental gaseous ideas that are continuingled with natural gas. Hydrocarbon gas liquids, assumed to be propane only. Beginning in 1993, includes fuel ethanol blended into motor gasoline. There is a discontinuity in this time series between 2014 and 2015 because of coverage. See Technical Notes, Section 4. Includes small amounts of petroleum coke not shown separately. e Conventional hydroelectric power. For 1960 through 1989, includes pumped-storage hydroelectricity, which cannot be separately identified. † There is a discontinuity in this time series between 1988 and 1989 due to the expanded coverage of renewable energy sources beginning in 1989. 9 Wood, wood-derived fuels, and biomass waste. Prior to 2001, includes non-biomass waste. h Solar thermal and photovoltaic energy. Excludes a small amount of solar thermal energy consumed as heat that is included in the ¹ For 1981 through 1992, includes fuel ethanol blended into motor gasoline that is not included in the motor gasoline column. are mostly derived, but should be counted only once in net energy and total. I incurred in the generation, transmission, and distribution of electricity plus plant use and unaccounted for electrical system energy losses. Pre-1990 estimates are not comparable to those for later years. See Section 6 of Technical Notes for an explanation of changes ^{— — =} Not applicable. NA = Not available. ^{— =} Not applicable. NA = Not available. Where shown, R = Revised data and (s) = Physical unit value less than 0.5 or Btu value less than 0.05. Notes: Totals may not equal sum of components due to independent rounding. • The commercial sector includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. • The continuity of these data series estimates may be affected by changing data sources and estimation methodologies. See the Technical Notes for each type of energy. Web Page: All data are available at https://www.eia.gov/state/seds/seds-data-complete.php. Sources: Data sources, estimation procedures, and assumptions are described in the Technical Notes.